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One basic effect of turbulence in turbulent premixed combustion is for the fluctuating 
velocity field to wrinkle the flame and greatly increase its surface area. In the flamelet 
theory, this effect is described by the flame surface density. An exact evolution equation 
for the flame surface density, called the C-equation, may be written, where basic 
physical mechanisms like production by hydrodynamic straining and destruction by 
propagation effects are described explicitly. Direct numerical simulation (DNS) is used 
in this paper to estimate the different terms appearing in the E-equation. The numerical 
configuration corresponds to three-dimensional premixed flames in isotropic turbulent 
flow. The simulations are performed for various mixture Lewis numbers in order to 
modify the strength and nature of the flame-flow coupling. The DNS-based analysis 
provides much information relevant to flamelet models. In particular, the flame surface 
density, and the source and sink terms for the flame surface density, are resolved 
spatially across the turbulent flame brush. The geometry as well as the dynamics of the 
flame differ quite significantly from one end of the reaction zone to the other. For 
instance, contrary to the intuitive idea that flame propagation effects merely counteract 
the wrinkling due to the turbulence, the role of flame propagation is not constant 
across the turbulent brush and switches from flame surface production at the front to 
flame surface dissipation at the back. Direct comparisons with flamelet models are also 
performed. The Bray-Moss-Libby assumption that the flame surface density is 
proportional to the flamelet crossing frequency, a quantity that can be measured in 
experiments, is found to be valid. Major uncertainties remain, however, over an 
appropriate description of the flamelet crossing frequency. In comparison, the coherent 
flame model of Marble & Broadwell achieves closure at the level of the Z-equation and 
provides a more promising physically based description of the flame surface dynamics. 
Some areas where the model needs improvement are identified. 

1. Introduction 
Flamelet models constitute one of the most common approaches for turbulent 

premixed combustion (Bray 1980; Williams 1985; Peters 1986; Poinsot, Veynante & 
Candel 1991). Such models are very attractive, as they conveniently separate the 
combustion problem from the analysis of the turbulent flow field. These models are 
based on the ‘flame sheet’ assumption, which requires chemical reaction to occur at 
fast timescales and short lengthscales relative to the turbulence. In this situation, the 
flame is confined to relatively thin layers within the turbulent flow field and the reaction 
zone is a burning surface. 
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Experimental evidence suggests that the topology of the reaction zone can indeed 
often be described as a continuous burning surface, and many practical premixed flame 
configurations are therefore believed to occur in the flamelet regime. Clearly, however, 
the flamelet regime is not the only possible premixed combustion mode and it is 
important to determine the domain of validity of the 'flame sheet' assumption. 
Unfortunately, the boundaries of this domain are not known with precision. In fact, 
different theories leading to significantly different predictions can be found in the 
literature (Williams 1985; Poinsot et al. 1991 ; Roberts et al. 1993). We refer the reader 
to the discussion of figure 1 in $3.1 for further details on this matter and consider in 
the meantime a combustion problem with sufficiently fast reaction. 

In the flamelet regime, it is convenient to describe the flameflow interactions in 
terms of the following two basic ingredients : a speed that characterizes the flame inner 
structure, and a surface area that characterizes the flame wrinkling. Within the flamelet 
formulation, these two ingredients appear both in the descriptions of local (spatially 
resolved) and global (space-averaged) flame properties. 

For instance, the local mean reaction rate may be written as a mean integrated 
chemical rate times the flame surface density : 

( h R )  = ( l h R d n )  (Z') = ( /hRdn) C, 
S S 

where hR is the mass of fuel consumed per unit time and per unit volume; hR dn is 
the local integral of the reaction rate along the flame normal direction; 27 is the flame 
surface area per unit volume; C is the flame surface density, defined as the expected 
value for 27,Z = (27 ) .  Note that in (l), all quantities are local and mean operators 
correspond to ensemble-averaging. While ( ) denotes a standard, unweighted 
ensemble-average, ( )s denotes a surface mean, defined as an area-weighted ensemble- 
average (Pope 1988), (Q)s = (QZ)/(C) = <QC)/C. 

In (l), the integral of the reaction rate can be replaced by the local fuel consumption 
speed, S,, defined as 

P 
1 s C -  =-J hR dn, 

P I  YR,u 
where pu and YR, zt are respectively the density and the fuel mass fraction in the unburnt 
gas. S,  characterizes the local combustion intensity. The mean reaction rate may then 
be expressed as the surface mean of S,, called the flamelet speed, times the flame 
surface density : 

Equation (3) is the classical flamelet expression for the ensemble mean of the reaction 
rate. In general, this mean reaction rate is a function of both position and time, 
(hR)  (x, t). An overall reaction rate can also be obtained by space-averaging (3) 
over an arbitrary volume, V, that encloses the reaction zone: 

where S?(t) and Z(t) are defined by the following expressions: 
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where S,(t)  is the total flame surface area within V at time t .  By definition, ( S , )  is 
equal to the volume integral of the flame surface density. 

S? and ( S , )  are global flame properties. Using (4) and (6), they are simply related 
to the turbulent flame speed, S,: 

where S,  is the projected area of the flame on a surface perpendicular to the direction 
of mean propagation. 

The flamelet speed, (Sc)s, in (3) and the mean fuel consumption speed, S;, in (4) 
and (7) account for local variations of the reaction rate along the flame surface. 
Laminar flame theory indicates that the local flame structure is modified by flow 
divergence, usually characterized by the strain rate acting in the flame tangent plane, 
as well as by flame front curvature (Clavin 1985; Williams 1985; Law 1988). The 
magnitude of these variations depends strongly on the molecular diffusive properties 
of the burning mixture. For an inert-abundant, fuel-lean or fuel-rich mixture, this effect 
can be analysed in terms of an effective Lewis number, defined as the ratio of thermal 
diffusivity to the mass diffusivity of the deficient reactant. When heat and the deficient 
reactant diffuse identically, i.e. when the Lewis number is unity, the structure of 
adiabatic unrestrained flames shows little alteration and remains approximately 
uniform along the reactive sheets. For non-unity Lewis numbers, however, differential 
diffusion of heat and species results in a strong sensitivity of the flame structure to 
strain rate and curvature. 

Furthermore, besides being affected by differential diffusion, the flame response is 
also strongly affected by the presence of heat loss (Libby & Williams 1983). Under 
certain conditions, the variations in flame intensity can become critical and lead to 
partial or total quenching of the flame. Recent numerical studies (Poinsot et al. 1991), 
however, as well as experimental results (Roberts et al. 1993), suggest that quenching 
is a rather unlikely event for turbulent premixed combustion (we are referring here to 
combustion problems without walls). In addition, although the local combustion 
intensity may exhibit large fluctuations along the turbulent flame front, particularly for 
non-unity Lewis number flames, and although these fluctuations may in turn result in 
strong spatial variations of the flamelet speed, (Sc)s, across the turbulent flame brush, 
direct simulations suggest that these departures from the laminar consumption rate 
have the remarkable tendency to cancel in the mean, i.e. when averaged over the whole 
flame (Ashurst, Peters & Smooke 1987; Haworth & Poinsot 1992; Rutland & Trouvt 
1993). In previous numerical studies, where the Lewis number takes values between 0.8 
and 1.2, the mean fuel consumption speed, S;, was determined to remain within 10 % 
to 30 % of the one-dimensional laminar flame speed value, sL. 

Thus, for flames with Lewis numbers close to unity, it appears that the mean fuel 
consumption speed, g,  is only weakly sensitive to the flow field and the principal effect 
of turbulence is for the fluctuating velocity field to wrinkle the flame and greatly 
increase its surface area. This phenomenon is represented in (3) by the flame surface 
density, Z. 

In flamelet models, the flame surface density is obtained either using an algebraic 
closure, like in current formulations of the Bray-Moss-Libby model (Bray, Libby & 
Moss 1984; Bray, Champion & Libby 1989; Bray 1990), or via a modelled transport 
equation, called the Z-equation (Marble & Broadwell 1977; Darabiha et al. 1987; Pope 
& Cheng 1988; Maistret et af. 1989; Candel et af. 1990; Cant, Pope & Bray 1990; 
Borghi 1990; Mantel & Borghi 1994). The &equation was first postulated by Marble 
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& Broadwell (1977) on phenomenological grounds. Recent theoretical work has 
produced a more rigorous approach that leads to an exact, but unclosed, formulation 
for the turbulent Z-equation (Pope 1988 ; Candel & Poinsot 1990). Unfortunately, the 
flame surface density and the different terms of interest in the turbulent Z-equation are 
not experimentally accessible. Comparisons between model predictions and ex- 
perimental results are usually performed with limited data sets and for global 
quantities like the turbulent flame speed (Duclos, Veynante & Poinsot 1993). These 
comparisons do not allow a direct critical evaluation of the closure assumptions used 
in current flamelet models and, as a result, the domain of validity of these assumptions 
is unknown. 

The objective of this research is to provide methods for sensitive testing of modelling 
ideas used in turbulent combustion. In the following, direct numerical simulation 
(DNS) is used to get basic information on the dynamics of flame surface densities. The 
paper is organized as follows. The theoretical framework for analysis of the flame 
surface density and the formulation of its exact transport equation are first reviewed 
in $2. Direct simulations of turbulent premixed flames are then used in the remainder 
of the paper to estimate the different terms appearing in the turbulent Z-equation. The 
numerical methods and numerical configuration are presented in $3.1. A new 
methodology to extract the flame surface density and other relevant quantities from the 
DNS database is described in $3.2. Results obtained with this new methodology are 
presented in $4. These include descriptions of global properties ($4.1) as well as local 
properties ($4.2) of turbulent flames with different Lewis numbers. In $4.2, the Z- 
profiles, and the source and sink terms for Z that determine production or dissipation 
of flame surface area are resolved spatially throughout the turbulent flame brush. 
Finally, detailed comparisons with flamelet models are performed and some 
shortcomings in current formulations are discussed in $ 5. 

2. Theory 
An empirical transport equation for the flame surface density was first postulated by 

Marble & Broadwell (1977). Using conservation equations for elementary volumes and 
surfaces embedded in a turbulent flow field, a more rigorous approach was later 
proposed by Pope (1988) and Candel & Poinsot (1990) who derive an exact balance 
equation for the flame surface-to-volume ratio, c' : 

where 8 is the velocity of the flame surface, given by the sum of the fluid velocity 
and the flame propagation speed in the normal direction : X = u + wn; n is the unit 
vector normal to the flame surface; and where we use standard tensorial notation: 
(nn: V$ = n, nj a2&,. 

The right-hand side of (8) can also be expressed in terms of flame stretch. The flame 
stretch, K ,  is defined as the rate of change of a Lagrangian flame surface element, SA : 

A more useful expression for K is in terms of strain rate, flame curvature and flame 
propagation speed (see for example Candel & Poinsot 1990) : 

K = aT+2wk,, (10) 
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where a, is the rate of strain acting in the flame tangent plane: aT = V u-nn: Vu; 
and km is the flame surface curvature, as given by the divergence of the flame normal 
direction: 2k, = V . n. In (lo), positive curvature is chosen convex towards the 
react ants . 

Using (lo), the balance equation for the flame surface-to-volume ratio can be re- 
written as 

When ensemble-averaged, this equation yields an exact balance equation for the 
flame surface density, C (Pope 1988; Cant et al. 1990): 

Note that, as mentioned in the introduction, surface means are different from standard 
means. Also, the surface mean of a quantity Q should not be confused with the 
ensemble mean of Q conditioned on being at the flame location: the former is a 
weighted average, the latter is not (see 83.2). 

Equation (12) can be cast in various forms. For modelling purposes, it is useful to 
split the velocity vector into a mean component and a turbulent fluctuation: u = 
U+u”, where the tilde denotes a Favre-averaged quantity: 8= ( p V ) / ( p ) .  We can 
then re-write (12) as follows: 

where we use the following notation : 

<aT),  = (V. uK-nn: VU”),, (14) 

The three convective terms on the left-hand side of (13) are transport terms that 
correspond respectively to convection by the mean flow, turbulent diffusion and flame 
propagation. The terms on the right-hand side of the equation are the source and sink 
terms for the flame surface density: ( a T ) ,  is the turbulent strain rate acting in the flame 
tangent plane, ( A T ) ,  is the strain rate due to the mean flow field, and 2(wk,), is a 
term that accounts for the combined effects of flame curvature and flame propagation. 

Equation (13) is an exact expression of the evolution equation for the flame surface 
density in a turbulent flow field. Unfortunately, many terms remain unclosed in this 
exact turbulent Z-equation. Modelling assumptions are therefore required, in 
particular to calculate the turbulent diffusion term and the turbulent flame stretch. Our 
concern in this study is the validation of these modelling assumptions. 

Although much progress has been reported in recent years in the development of 
experimental techniques that monitor the flame position (for instance spontaneous 
light emission measurements, laser tomography and laser induced fluorescence) and 
techniques that resolve the velocity gradients (in particular particle tracking 
velocimetry and particle image velocimetry), measuring a flame-based quantity like 
stretch in a turbulent flow environment remains a very difficult task. While strain rate 
measurements have been reported in studies of laminar flame-vortex interaction 
(Driscoll et al. 1993), such measurements have not yet been attempted in turbulent 
flames. Thus, experiments provide little guidance for modelling the turbulent Z- 
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equation. In this context, a numerical approach is a particularly attractive alternative. In 
the following, we describe three-dimensional DNS of premixed flames embedded in 
isotropic turbulence. 

3. Direct numerical simulation of turbulent premixed flames 
3.1. Numerical methods and numerical configuration 

We use DNS to analyse the different terms in the equation for the flame surface density. 
The simulations are performed using a three-dimensional compressible Navier- 
Stokes solver that fully resolves the turbulent flow field. The solver uses a high-order 
finite-difference scheme : spatial derivatives are computed with a modified Pad6 scheme 
that is sixth-order accurate (Lele 1992); solutions are advanced in time with a third- 
order Runge-Kutta method (Wray 1990) ; boundary conditions are specified with the 
NSCBC method (Poinsot & Lele 1992). We refer the reader to Lele (1992) and Poinsot 
& Lele (1992) for further details concerning the system of equations solved and the 
numerical methods. 

Because of the otherwise prohibitive computational cost, simulations are limited to 
simple but finite-rate reaction schemes. In this work, the chemistry model is a single- 
step irreversible chemical reaction where the reaction rate depends exponentially on 
temperature (Arrhenius kinetics) : 

cjR = B p  yRexp(-K/T), (16) 

where is the activation temperature and B is a constant that is determined according 
to the selected laminar flame speed. This formulation corresponds to a binary reaction 
in which one of the reactants, Y,, is strongly deficient; for example, in fuel-lean 
combustion. Also, it is worth emphasizing that the simulations do not use the constant- 
density assumption, the reaction is exothermic and heat release effects are fully 
accounted for. 

Following Williams (1983, we re-write the reaction rate as 

where 8 is the reduced temperature, 8 = (T- T,)/(T, - T,); T, is the temperature of 
the fresh reactants; & is the adiabatic flame temperature; and the coefficients A, a, and 
B are, respectively, the reduced pre-exponential factor, the heat release factor, and the 
reduced activation energy : 

Values of the flame parameters are reported in table 1. A has dimensions of T' and 
is specified so that the laminar flame speed, sL, remains constant throughout all 
simulated cases. 

Another important feature of the simulations is that the transport coefficients are 
temperature dependent. These coefficients satisfy the following relations : 

,!L = p,(T/T,)*, Le = hth/pDcp = constant, Pr = ,!LCp/hth = constant, (19) 

where p, hth and D are the molecular diffusivities of, respectively, momentum, internal 
energy and species mass; cp  is the specific heat at constant pressure; b is a constant; 
and Le and Pr are respectively the Lewis number and the Prandtl number. Simulations 
have been performed for four different Lewis numbers, Le = 0.3,0.8, 1.0, and 1.2 (table 
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Le a B A+ b Pr 
0.3 0.75 8.0 972 0.76 0.75 
0.8 0.75 8.0 456 0.76 0.75 
1 .o 0.75 8.0 386 0.76 0.75 
1.2 0.75 8.0 332 0.76 0.75 

TABLE 1.  Dimensionless flame parameters for the four simulated cases. A is made non-dimensional 
by the laminar flame time, A+ = A(h,,/pc,),/s~ 

t b 0  U'ISL 111, %IS, %Ib Re, Re, Da 
0 10.0 5.2 2.8 0.27 70.0 50.0 0.37 
2.5 4.9 5.2 2.3 0.32 33.5 17.5 0.54 
4.3 3.3 5.6 1.7 0.43 24.3 13.5 0.98 

TABLE 2. Dimensionless parameters for the simulations. The first row is the initial condition ( t  = 0); 
the second row is at normalized time t/70 x 2.5, and the third row is at time t/7, x 4.3, where 7" is 
the initial turbulent eddy turnover time 

1). The Lewis number is modified by changing the value of the mass diffusivity in the 
unburnt gas, D,. The laminar flame thickness, defined as ZF = (Ath/pcp),/sL, remains 
constant throughout all simulated cases. 

The computational configuration corresponds to a premixed flame embedded in a 
three-dimensional decaying isotropic turbulent flow. The calculations are initialized 
with fresh reactants on the left-hand side of the domain (x < 0) and burnt products on 
the right (x > 0) ; the two are separated by a plane laminar flame. Isotropic turbulence 
is initially located in the flow of fresh reactants, its velocity field being specified 
according to a model energy spectrum: 

(20) E(k) = C ( k / k 3  exp { - 2(k/kJ2>, 

where k is the wavenumber; and C and k, are model parameters that are specified 
according to, respectively, the initial turbulent rams. velocity, u', and integral 
lengthscale, 1. The left- and right-hand sides of the computational domain are inflow 
and outflow boundaries, while periodic boundary conditions are applied at lateral 
walls. Non-periodic boundary conditions are needed along x due to the density change 
from unburnt to burnt gases. Note, however, that no turbulence is generated at the 
inflow boundary and the simulations are time-evolving rather than space-evolving. 

Values of the run parameters are reported in table 2. At time t = 0, the turbulence 
is characterized by a Kolmogorov lengthscale smaller than the laminar flame thickness, 
y k / l F  < 1, and a turbulence intensity that is much higher than the laminar flame speed, 
u'/sL = 10. The initial turbulent Reynolds number based on the Taylor microscale, A, 
is Re, = 50. The initial turbulent Reynolds number based on the integral lengthscale 
is Re, = 70. In table 2, a Damkohler number is also introduced using the Kolmogorov 
timescale and the laminar flame time: Da = (A/u') / ( lF/sL)  = dT5(qk/vk)/(lF/sL),  
where vk is the Kolmogorov velocity. The simulated flames correspond to relatively low 
Damkohler numbers, Da < 1. Also the grid spacing is uniform in all three directions. 
The resolution is 12g3, except for the Le = 0.3 case where a 129 x 65 x 65 grid was used 
(129 mesh points in the direction of mean flame propagation, x). 

Our choice of the run parameters has been dictated by the desire to simulate 
turbulent flows with the highest possible Reynolds numbers, while still resolving the 
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FIGURE 1.  Time evolution of the DNS flameflow conditions in a turbulent combustion diagram 
parametrized by ( l / l p ,  u’/sL), and where the boundary separating the flamelet regime and the 
distributed reaction regime is estimated according to : the Klimov-Williams criterion, (KW) ; the 
Poinsot et al. criterion (PVC); the Roberts et al. criterion (R). The simulations correspond to 
nodamelet combustion according to KW and to flamelet combustion according to PVC and R. 

flame structure as well as maintaining flame and flow conditions consistent with the 
flamelet picture. This last aspect is now discussed in more detail. 

Following Poinsot et al. (1991), the domain of validity of the flamelet picture is 
considered in figure 1, in a turbulent combustion diagram whose coordinates are the 
relative flow to flame length and velocity scale ratios, 1/1, and u‘/sL. Equivalent plots 
but with different selections of coordinates are given in Bray (1980), Williams (1985), 
Peters (1986). Two important combustion regimes are identifiable in figure 1: the 
flamelet regime and the regime of distributed reaction. The former corresponds to fast 
flame-sheet reaction, and is the focus of the present study; the latter occurs when 
turbulent mixing is rapid enough compared to the chemistry, thereby causing the 
reaction zone to become volume filling. The precise location of the boundary 
separating these two limiting regimes remains an open question. 

According to the classical Klimov-Williams criterion (KW), flamelet combustion 
occurs when the laminar flame time is shorter than the Kolmogorov time, lF/sL < 
qk/ok, or equivalently (u’/sJ < l / lF  (see figure 1). While being a valuable first-order 
estimate, KW is based on dimensional analysis and its accuracy is uncertain. For 
instance, KW is derived from the assumption that the maximum turbulent flame 
stretch is produced by the Kolmogorov eddies, whereas two recent studies of laminar 
flame-vortex interactions, a numerical study by Poinsot et al. (1991) and an 
experimental study by Roberts et al. (1993), find that the smallest flow scales cannot 
influence the flame structure because they lack sufficient energy. Both studies argue 
that the KW criterion underestimates the size of the flamelet domain, and propose 
modified criteria (PVC and R, respectively) to predict flamelet combustion. As seen in 
figure 1, PVC and R differ significantly from KW, particularly at small lengthscale 
ratios, 111, < 30. 

Since the present simulations feature decaying turbulence, the DNS characteristics 
are time evolving and are represented by a line segment in figure 1. This line segment 
is within the flamelet domain according to PVC and R, but outside that domain 
according to KW. In the absence of agreement among the above three criteria, a careful 
direct examination of the instantaneous flame topology was performed using three- 
dimensional graphics. Visual inspections of the flame topology are well-suited to 
determine whether the chemical reaction is flamelet-like and occurs in surfaces 
(characterized by a thickness close to the laminar flame thickness, lF)  or is distributed 
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and occurs in volumes (characterized by a size much larger than l.). We found that 
despite the low flame Damkohler numbers, the reaction zone can still be described as 
a surface (see figure 6) and the simulated flames occur in the flamelet regime. 

In summary, the simulated flames are believed to be representative of the flamelet 
regime. The simulations describe the wrinkling of the flame zone by turbulent motions 
as well as the effect of combustion on the flow due to dilatation and temperature- 
dependent transport properties. The Lewis number is used as a control parameter to 
modify the strength and the nature of the coupling between the chemistry and the 
turbulence. 

3.2. Diagnostics 
All terms in (13) can be obtained from the simulations. We now briefly describe how. 
The velocity vector and the velocity-gradient tensor are readily obtained from the 
resolved flow field. To define flame-based quantities, we make use of the thin-flame 
picture. First, a progress variable, c, is introduced to indicate location within the 
reaction zone, c = 1 -( YR/YR,u). The progress variable varies monotonically through 
the flame from 0 in the reactants to 1 in the products. Constant-progress-variable 
surfaces may conveniently be used to define the flame front location. Note that this 
definition of the flame surface might appear questionable in the present simulations 
owing to the presence of small turbulent eddies in the preheat zone (0 < c < 0.6). These 
eddies, however, dissipate rapidly, before they can reach the reaction zone (0.7 < c < 
0.9). Thus, in the reaction zone, the constant-c surfaces are approximately parallel and 
the choice of a particular c-contour to define the flame front location appears as a valid 
approximation: we use the surface c = cf = 0.8. In addition, at any location on this 
surface the local gradient of c defines the normal direction to the flame front: 

where n points into the fresh reactants. 
The propagation speed of the flame surface, w, is obtained from an expression 

analogous to the well-known field equation (also called the G-equation, see for example 
Kerstein, Ashurst & Williams 1988). Let us first consider a point on the flame surface, 
c = cf. The velocity, k, at which this point must move to remain on the surface is 
given by 

n = -Vc/lVcl, (21) 

(22) 
ac -+x. vc  = 0, 
at 

which, using (21), implies that 

and yields the following expression for the flame propagation speed: 

where the quantities are evaluated at the surface c = cr. In the simulations we solve a 
conservation equation for the fuel mass fraction, YR, and since by definition c = 
1 - ( YR/ YR, .), the expression above can be readily obtained from the DNS database: 

The flame surface density, Z, is a more subtle quantity. It includes both geometrical 
and statistical information. Following Pope (1 990), the flame surface density is 
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FIGURE 2. A geometrical expression for the joint probability of the progress variable and the 
magnitude of its gradient in a given (y, 2)-plane: p(c,, y)dcdy = probability(c, d c < c,+dc; y d IVcl 
< y+dy) = 6 S / L ,  L,, and SS = dl(dc/ylcos81), see (29). 

expressed as the product of the expected value for the magnitude of the gradient of c, 
conditioned on being on the flame surface, times the probability of being on that 
surface : 

Z = lvcl S(c- c,), and Z = (Z) = (IVcl I c = c,>p(c,), (26) 
where p(c,) is the probability of c = c,. An equivalent expression for Z, also proposed 
by Pope (1990), is in terms of the joint probability of the scalar c and the magnitude 
of its gradient: 

(27) 

where y = IVcl. 
We now turn to the averaging problem. In the simulations, the flame brush 

propagates along the x-direction, and the problem remains homogeneous in the ( y ,  2)- 
planes. Therefore, averaged quantities depend on x and time t only, and ensemble- 
averaging can be performed in the (y, z)-planes : 

Z = J; YP(C,Y 7 )  dy, 

where L, and L, are the y- and z-dimensions of the computational domain. Since the 
flow field is non-stationary, time-averaging cannot be used and the present analysis 
is based exclusively on slicing the DNS database in planes perpendicular to the 
direction of mean flame propagation. 

Let us now consider a particular (y, z)-plane, x = x,. In that plane, the flame contour 
c = c, is generically a set of closed lines. The flame surface density, as well as the 
various surface and conditional means in the analysis, can be expressed in terms of line 
integrals along this (c = cry x = x,) line contour. For instance, as suggested by (27), the 
flame surface density, Z, can be obtained via the joint probability p(c, ,y).  Simple 
geometrical considerations lead to the following relation (see figure 2) : 
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where dl designates the arclength of an infinitesimal flame element on the line contour 
c = cf, and 0 is a measure of the orientation of this flame element with respect to the 
x = x, plane. In (29), summation is over all occurrences of the event (c, IVcl) = (cry y). 

Combining (27) and (29), a convenient expression for Z i s  obtained: 

where we use the geometrical relation: lcos 01 = [ ( a ~ / a y ) ~  + (i3c/i3~)~]l”~//(Vcl. 

probability p(c,) : 
Also, integrating (29) over all possible values of y gives an estimate for the 

which in turn can be used to derive the following expressions for conditional and 
surface means : 

J C-cf  

,. 

J C-cf 

Clearly, surface means differ from standard means, (Q), 9 (Q), as well as from 
conditional means, (Q), $: (Q 1 c = c,). 

The relations above provide a methodology to estimate the different means needed 
in our analysis. The accuracy of these expressions depends on the size of the 
computational domain with respect to the turbulent lengthscales. In the simulations, 
the integral lengthscale, 1, of the turbulent flow field grows as the kinetic energy decays; 
this growth, however, is rather slow, and it has been determined that 1 remains at least 
8 times smaller than L, and L,. In any case, we recognize that the statistics are 
somewhat undersampled. For instance, the DNS-based profiles presented in $4.2 are 
rough and sometimes spiky, which clearly suggests that statistical convergence is not 
fully achieved. These errors, however, are deemed acceptable as long as the basic 
features of the profiles are captured correctly. 

4. Results and discussion 
4.1. Global flame properties 

The expressions (9, (6) and (7) in the introduction give the general relationship 
between the local mean quantities, (Sc)s and C, and the more familiar global flame 
properties, g,  <S,) and S,. Also, as described in the previous section, the analysis 
takes advantage of the fact that the simulated flames are statistically one-dimensional 
and provides the various local mean quantities of interest as a function of time t and 
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FIGURE 3. Lewis-number effects on the overall reaction rate. The total reaction rate, OR), is made 
non-dimensional by its initial value corresponding to a strain-free plane laminar flame. Time is made 
non-dimensional by the initial turbulent eddy turnover time, T ~ .  

position x within the turbulent flame brush. In the present case, (9, (6) and (7) 
translate to the following relations: 

(34) 

(36) 

In (34), if the computational domain is large enough and space-averaging can be used 
to obtain ensemble-averages, then the mean fuel consumption speed, S:, can also be 
expressed as the area-weighted space-averaged value of S,  integrated along the 
turbulent flame surface: S; = jS ,6A/SSA,  where 6A designates the area of an 
infinitesimal flame element and where integration takes places along the flame contour. 
This last expression does not require an estimate of the flame surface density and was 
previously used by Haworth & Poinsot (1992). 

Another useful global flame property is the total flame stretch, 2. Using (12), i can 
be directly related to the instantaneous rate of change of the total flame surface area 
in the computational domain : 

h R )  (x, t )  dx = SJt) - ~. <S")( t )  S,(t) = ~ 

Pll YR,U S( L, Lz 

k(t)  = ( S(K).(X, t)Z(x, t)dx)/( p ( x ,  t)dx) = v / ( S v ) .  (37) 

If i is positive, the flame surface grows; if negative, the flame surface contracts. 
As described in $3, four different cases have been simulated that correspond to 

turbulent flames characterized by the same laminar flame thickness, I,, the same 
laminar flame speed, sL, embedded in the same initial turbulent flow field, but with 
different Lewis number, Le = 0.3, 0.8, 1.0 and 1.2. 

Figure 3 shows that - the four cases exhibit large differences in the time history of the 
total reaction rate, (hR)  ( t ) .  These differences remain moderate when comparing Le = 
1.0 and 1.2. They are much stronger for Le = 0.8: after 4 turbulent eddy turnover 
times, t / T O  > 4, the Le = 0.8 flame burns twice as fast as the Le = 1.2 flame. And they 
prove quite dramatic for Le = 0.3: after only 2 eddy turnover times, t / ~ , ,  > 2, the 
Le = 0.3 flame burns more than twice as fast as the Le = 0.8 flame. In fact, the 
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FIGURE 4. Lewis-number effects on the mean fuel consumption speed, S,. S ,  is made non-dimensional 
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FIGURE 5. Lewis-number effects on the relative increase of total flame surface area, ( S , ) / L ,  L,. 
Time is made non-dimensional by the initial, turbulent eddy turnover time, 70. 

acceleration of the Le = 0.3 flame is so dramatic that the computations have to be 
stopped at t / T O  x 2.5, as the first flame elements have already reached the left-hand side 
of the computational domain. 

The sensitivity of the global flame response to changes in the flame physical 
properties has been the focus of a number of recent experimental studies. Strong 
thermo-diffusive effects, similar to the present results, have been observed in turbulent 
flames both at low Reynolds numbers (Lee, North & Santavicca 1992; Goix & 
Shepherd 1992) and high Reynolds numbers (Abdel-Gayed et al. 1984; Wu et al. 1990). 
For instance, W u  et al. (1990) show that a turbulent hydrogen-air jet flame, 
characterized by Re, rz 1800, u’/sL z 3, and unstable thermo-diffusive conditions 
(Le < l), has twice the turbulent flame speed of a similar flame but with stable thermo- 
diffusive conditions (Le > 1). 

As suggested by (36), such differences in the flame response Eay be related to a 
modification of the turbulent flame structure through changes in S,, to a modification 
of the total flame surface area through changes in (&), or to a combination of both. 
The effect of the Lewis number on the mean turbulent flame structure is shown in figure 
4. For flames with Lewis numbers close to unity, 0.8 < Le < 1.2, the mean flamelet 
speed, $, is found to be only a weak function of the turbulence: at all times, 
departures of & from the laminar value, sL, remain within 30 %. In contrastLo these 
flames, when Le = 0.3, the mean combustion intensity is strongly amplified, S ,  grows 
exponentially and, at t / ~ , ,  > 2, takes values that are more than twice as large as sL. 



14 A .  Trouve' and T. Poinsot 

FIGURE 6(4. For caption see page 17. 

The effect of the Lewis number on flame surface production is presented in figure 5 .  
For Le = 1.0 and 1.2, the flame surface area initially increases, reaches a maximum, 
and then decreases in time. The increase occurs as the turbulence wrinkles the initially 
flat flame surface. The flame then adapts to its turbulent environment, and, as the 
turbulence decays, the flame surface becomes smoother and relaxes to its initial state. 
The Le = 0.3 and 0.8 flames exhibit a strikingly different behaviour where the flame 
surface area keeps increasing in time without saturation. Although saturation might be 
expected at later times, our simulations are limited by the size of the computational 
domain and this subsequent phase is not observed. In any case, the simulations indicate 
that saturation will not occur on a timescale characteristic of the turbulence. In that 
sense, the Le = 0.3 and 0.8 flames can be qualified as unstable. 

As might be expected, the differences between stable and unstable burning are so 
pronounced that one can easily detect the transition from one regime to the other by 
comparing instantaneous snapshots of the flame surface (figure 6). For instance, for 
Le = 0.3 or 0.8, fingers of burnt products are seen to propagate at a fast rate into 
the fresh reactants (figures 6dand 6c). We believe that this 'fingering' is an important 
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FIGURE 6(b) .  For caption see page 17. 

ingredient of the flame instability process and of the overall flame acceleration. The 
‘fingering’ is not observed in the Le = 1.0 or 1.2 flames (figures 6b and 6a). 

In summary, when interpreting the global flame response, it is useful to distinguish 
the Le = 0.3 case from the other cases where the Lewis number is close to unity, 0.8 < 
Le < 1.2. For flames with Lewis numbers close to unity, our results are in agreement 
with previous findings by Ashurst et al. (1987), Haworth & Poinsot (1992), Rutland & 
TrouvC (1993). In these studies, the effect of the Lewis number on the turbulent flame 
speed, S,, is shown to be primarily a flame surface effect. The modelling implications 
of this result are that for nearly equi-diffusive mixtures, the variations in the flame 
structure due to the turbulence can be neglected and the flame surface density is the 
single key quantity that to first order determines the mean reaction rate. Our results, 
however, also show that these conclusions are Lewis-number dependent and suggest 
that they might in fact only hold for Lewis numbers in a finite range around Le = 1. 
In the Le = 0.3 case, the dramatic effect of the Lewis number on flame surface 
production is coupled with a significant increase in the mean flame intensity. Therefore, 
for mixtures characterized by a strong imbalance in diffusive properties, both the flame 
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FIGURE 6(c) .  For caption see facing page. 

surface density and the flamelet speed need to be modelled to determine the mean 
reaction rate. 

4.2. Local flame properties 

4.2.1. The flame surface density profiles 
Using the methodology described in 93.2, we now analyse the spatial distribution of 

flame surface density across the turbulent flame brush. Figure 7 compares several Z- 
profiles taken at different instants in the simulations. The Lewis number is 0.8. At t = 0, 
Z is a Dirac delta-function located at x = 0. As time evolves, the turbulent flame brush 
grows thicker and propagates deeper into the reactants. Accordingly, the 2-profile 
spreads out and shifts towards negative values of x. In figure 7, this shift is rather weak 
but becomes more visible as time increases. 

Figure 8(a)  compares the Z-profiles obtained for different Lewis numbers. The 
comparison is performed at the same instant in the simulations, t / T O  w 4.3. The effect 
of the Lewis number is clearly seen in figure 8(a) with a turbulent flame brush that 
propagates faster and deeper into the reactants for more diffusive mixtures. Note that, 
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FIGURE 6. Snapshots of the flame surface contour, c = c,: (a) Le = 1.2; (b) Le = 1.0; (c) Le = 0.8; (d)  
Le = 0.3. While pictures (a), (b) and (c) are taken at time t/7,, 2: 4.3 and show a perspective where 
the flow is from top-left (reactants) to bottom-right (products), picture ( d )  is taken at an earlier time, 
t!7,, 2: 2.5, and shows a different perspective where the flow is from bottom-left (reactants) to top- 
nght (products). 

as shown in (35), the x-integral of Z gives the relative increase of total flame surface 
area and the local differences in the profiles plotted in figure 8(a), when integrated, 
correspond to large global differences in the total amount of flame surface area, (&). 

A different perspective is adopted in figure 8(b) where x-location within the 
turbulent flame brush is indicated by the local mean progress variable, (c) ; (c) (x, t )  
versus x is a monotonic bounded profile and the thickness of this profile is the turbulent 
flame thickness, 8,. Although they are different in physical space, the &profiles 
obtained for different Lewis numbers collapse when mapped in (c)-space. This result 
indicates that the effect of the Lewis number on the spatial distribution of flame surface 
density, as observed in the simulations, is primarily an effect on 8,. 

Also plotted in figure 8(b) is the flame surface density predicted by the 
Bray-Moss-Libby (BML) model. This curve will be discussed in 9 5.1. 
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FIGURE 7. Time evolution of the flame surface density, Z, in the computational domain (reactants on 
the left; products on the right). Le = 0.8. ,Z and x are made non-dimensional by the laminar flame 
thickness, I,. t is measured in units of the initial turbulent eddy turnover time, T,,. 
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FIGURE 8. The spatial distribution of flame surface density, C, across the turbulent flame brush: (a) 
in physical space; (b) in (c)-space, where DNS results are compared with the Bray-Moss-Libby 
model. t / T O  x 4.3. 2 and x are made non-dimensional by the laminar flame thickness, I,. 

4.2.2. The source and sink terms in the equation for Z 
One important advantage of the present analysis is to distinguish between the 

leading edge and the rear edge of the turbulent flame brush. The geometry as well as the 
dynamics of the flame differ quite significantly from one end of the reaction zone to the 
other, as shown in figures 9-15. For convenience in the next plots we adopt the 
perspective of figure 8 (b), where location within the turbulent flame brush is indicated 
by (c) instead of x. Also, all the plotted profiles in this subsection are instantaneous. 
While these profiles do vary in the course of the simulations, we are only interested here 
in their persistent features, i.e. their basic properties that are independent of the 
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FIGURE 9. Variations of the mean flame curvature, ( k , J S ,  across the turbulent flame brush. Le = 0.8, 
t / ~ ~  z 4.3. Flame curvature is made non-dimensional by the laminar flame thickness, I,,. 
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FIGURE 10. Variations of the mean fuel consumption speed, (Sc)S, across the turbulent flame 
brush. 1 1 ~ ~  x 4.3. S,  is made non-dimensional by the laminar flame speed, s,. 

turbulence decay. These persistent features were determined by a systematic analysis of 
the database. Finally, except for the Le = 0.3 case, comparisons between the different 
simulations are performed at normalized time t / ~ ~  x 4.3, when the flame response to 
the turbulence is fully developed. Since the flame response is much faster for Le = 0.3, 
data are in that case analysed at an earlier time, t /70 x 2.5. The values of the turbulent 
length and velocity scales at these instants are reported in table 2. 

Figure 9 presents the spatial variations of the mean flame curvature, (km)s,  across 
the reaction zone. The mean curvature goes from positive at the leading edge to 
negative at the rear edge of the turbulent flame. Since in non-unity-Lewis-number 
flames, the local flame intensity, as measured by the fuel consumption speed, S,, 
depends strongly on flame curvature, and since the dependence is quasi-linear 
(Haworth & Poinsot 1992; Rutland & Trouve 1993), the strong variations in mean 
flame geometry illustrated by figure 9 must correspond to equally strong variations in 
mean flame structure. Moreover, since the correlation between S, and k ,  is Lewis- 
number dependent (positive for Le < 1 and negative for Le > l), the spatial variations 
of the flamelet speed, (S,),, are expected to show opposite trends for Le = 0.8 and 1.2. 
Figure 10 shows that this is indeed the case. For Le = 0.8, (S,)s is like (km)?  a 
decreasing function of the mean progress variable, (c). In that case, the combustion 
intensity at the leading edge is higher than at the rear edge of the turbulent flame. On 
the other hand, for Le = 1.2, the flame structure goes from slower burning, close to 
(c) = 0, to faster burning, close to (c) = 1. Note that the magnitude of the variations 
in (S,)s is much decreased for Le = 1.2 compared to Le = 0.8. For Le = 1, ( S c ) s  
remains approximately constant and equal to the laminar flame speed, sL. 
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FIGURE 1 1. Variations of the mean flame propagation speed, (w),, across the turbulent flame brush. 
Note that while the Le = 0.8 curve uses data taken at time f /70  z 4.3, the Le = 0.3 curve corresponds 
to an earlier time, t / 7 0  x 2.5. w is made non-dimensional by its value corresponding to a strain-free 
plane laminar flame, w = s,p(c = O)/p(c = c,). 

Our discussion of the flamelet framework in @ l  and 2 indicates that in the flamelet 
regime, a flame element can be characterized by two speeds: a chemical rate, S,, and 
a kinematic quantity, w. We recall that w gives the velocity of the flame front with 
respect to the flow field and is measured at c = cr, where reaction actually occurs, 
w = w(c = cr). A more familiar quantity is the flame displacement speed relative to 
the unburnt gas. This speed is defined at the upstream boundary of the preheat zone, 
S, = w(c = 0'). For a steady strain-free plane laminar flame, the speeds S,  and S,  
are the same and are equal to sL, while w accounts for the flow acceleration due to 
density variations, w = s,p(c = O)/p(c = cf). For unsteady flames, however, or flames 
subjected to stretch, that is strained and/or curved, these simple one-dimensional 
relations no longer hold. For instance, at the tip of a Bunsen burner, the speeds S, and 
sd, as well as S, and w, can differ by an order of magnitude (Poinsot, Echekki & 
Mungal 1992). 

In fact, situations might occur where the rate of fuel consumption and the rate of 
flame propagation not only prove to be different but also exhibit opposite behaviour. 
This richness and subtlety in the flame response is illustrated in figure 1 1. A comparison 
of figures 10 and 11 indicates that for Le = 0.8, the leading edge of the turbulent flame 
burns faster but propagates more slowly than the rear edge of the flame, which burns 
more slowly but propagates faster into the reactants. 

This paradox is similar to that occurring in stretched laminar flames for Lewis 
numbers slightly below one. For instance, for weak stretch the classical theory of 
laminar flames predicts a linear response for the influence of stretch, K,  on both the 
displacement speed, s d ,  and the fuel consumption speed, S ,  (Clavin & Williams 1982; 
Pel& & Clavin 1982; Clavin 1985; Williams 1985): 

s, = SL - yd K,  (38) 
s, = S L - y c K ,  (39) 

where 9, is a constant known as the Markstein length, and 9, is another constant, 
sometimes designated as a second Markstein length. Both 9, and 9, are functions of 
the flame physical properties. They are, in particular, functions of the Lewis number 
and change sign at some critical value of Le, going from positive to negative as Le 
decreases. These critical values, however, are different: while Yc changes sign at Le = 1, 
9, changes sign at a different value, Le = Le, (see table 3). Le, is called the critical 
Lewis number and its value for practical laminar flames is below one (Clavin & Garcia 
1983). As pointed out in the studies by Matalon & Matkowsky (1982) and Matalon 
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TABLE 3. Lewis-number effects on the sign of the Markstein lengths, and YC. & and gC are 
respectively based on the flame displacement speed, S,, and the fuel consumption speed, S,, see (38) 
and (39) 

- 

(1983), the local flame response may then be summarized as follows: when 1 < Ley a 
positive (negative) stretch tends both to reduce (increase) the flame intensity and slow 
down (speed up) the flame; when LQ, < Le < 1, an increase (decrease) in flame 
intensity occurs for K > 0 (K < 0) together with a decrease (increase) in the flame 
displacement speed; when Le < Le,, a positive (negative) stretch increases (reduces) the 
flame intensity and accelerates (decelerates) the flame. The interesting prediction here 
is that the effects of stretch on flame structure and flame propagation are opposite in 
the range Le, < Le < 1. 

While these theoretical results are formally limited to weak stretch, they do not 
require the flow to be laminar and the Markstein length remains a valid concept in 
turbulent flames with large scales and low intensities (Clavin & Williams 1982; 
Aldredge & Williams 1991). For more general cases, the weak stretch theory still 
provides a useful framework for interpreting the dynamics of flamelets embedded in 
turbulent flows. For instance, the surprising result in the simulations that when Le = 
0.8, an increase in flame intensity is not necessarily associated with an acceleration of 
the flame (figures 10 and 11) is consistent with Lewis-number effects in the weak stretch 
theory and a critical Lewis number in the range 0.3 -c Le, < 0.8. On the other hand, 
some other results from the simulations are found to be at odds with the theory. For 
instance, the properties of individual flame elements seem to correlate with flame 
curvature rather than flame stretch. Similar observations emphasizing the role of 
curvature were made in previous studies by Haworth & Poinsot (1992) and Rutland & 
Trouvk (1993). This interesting point is beyond the scope of the present paper and will 
be addressed in future work. Also, while the data suggest that the critical Lewis number 
is above 0.3, an estimate of Le, based on the theoretical expression proposed by Clavin 
& Garcia (1983) gives Le, x 0.1. As shown in figure 12, the DNS values of K,  at time 
t / T o  w 4.3, range from - 5  to 2 (in units of the laminar flame time). These values of 
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FIGURE 13. Variations of the mean strain rate across the turbulent flame brush. While ( A T ) s  
represents the effect of the mean flow gradient, ( U ~ ) ~ + ( A ~ ) ~ ~  is the total mean strain rate, see (14) 
and (15). Le = 0.8, t / T O  z 4.3. Strain rate is made non-dimensional by the laminar flame time, 
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FIGURE 14. Variations of the mean propagation term, 2 ( ~ k , ) ~ ,  across the turbulent flame brush. 
Le = 0.8, t /70 x 4.3. wk, is made non-dimensional by the laminar flame time, (A,,/pc,), /s~. 

stretch are quite large and the simulated flames are clearly beyond the domain of 
validity of the weak stretch theory, which might account for the apparent discrepancies. 

We now turn to the terms appearing on the right-hand side of the equation for C. 
As seen in (14) and (15), the mean tangential strain rate at the flame can be decomposed 
into two components. Both components are presented in figure 13. The strain rate due 
to the mean flow field is a production term and depends on the mean streamwise 
velocity gradient and the flamelet orientation : ( A T ) ,  = (1 - ( n i ) , )  do/dx, where n, is 
the x-component of the flame normal vector. In fact, the simulations indicate that the 
statistics describing the flamelet orientation do not vary significantly across the 
turbulent brush (see QS.l), and ( A T ) ,  may be considered as proportional to do/dx. 
The turbulent component, (aT), ,  is also a production term. In the mean, globally as 
well as locally, the turbulent motions always tend to increase the flame surface area. 

While the total strain term, ( C I ~ ) ~  + (AT) , ,  remains positive and approximately 
constant across the turbulent flame, the propagation term, 2( wk,),, exhibits strong 
spatial variations and decreases from positive values on the unburnt side, close to 
(c) = 0, to negative values on the burnt side, close to (c) = 1 (figure 14). Thus, while 
the propagation term is the only term in the transport equation for Z that accounts 
for dissipation of flame surface area, its role is not constant across the flame zone 
and switches from production at the front to dissipation at the back. 

The net effect on the surface growth rate is given by the flame stretch, ( K ) ~  = 
((aT),* + (AT),9)+2(wk,) , ,  and is presented in figure 15(a). Interestingly, a 
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FIGURE 15. Variations of the mean flame stretch, (K)~, across the turbulent flame brush: (a) 
comparison between DNS results (Le = 0.8) and the coherent flame model; (b) Lewis-number effects 
(DNS results). x 4.3. Stretch is made non-dimensional by the laminar flame time, (A,,/pc,), /s~. 

comparison of figures 13 and 14 indicates that both contributions to stretch - total 
strain and propagation - have the same order of magnitude. At the leading edge of the 
reaction zone, strain rate and flame propagation effects are locally cumulative and the 
overall balance is strongly positive. The leading edge of the turbulent flame is a region 
of strong production of flame surface area. On the other hand, the propagation term 
takes large negative values on the burnt side. In that region, strain rate and flame 
propagation effects are locally opposite and the overall balance is negative. The rear 
edge of the turbulent flame thus appears as a region where flame surface area gets 
strongly dissipated. 

Also plotted in figure 15 (a)  is the turbulent flame stretch predicated by the coherent 
flame model (CFM). This model and its performance compared to the DNS results will 
be discussed in 5 5.2. 

Figure 15(b) presents the mean flame stretch profiles, ( K ) ~  versus (c), plotted for 
different Lewis numbers. In all cases, stretch takes large negative values on the burnt 
side, close to ( c )  = 1. The effect of the Lewis number is not significant in that region. 
In comparison, at the leading edge of the flame, large differences between the different 
Lewis number cases appear. This suggests that the turbulent flame is most sensitive to 
Lewis-number effects on the unburnt side, whereas it remains relatively unaffected on 
the burnt side. 

The stretch profiles spatially resolve the balance between production and dissipation 
of flame surface area. The net global growth rate is given by the total flame stretch, R, 
as defined in (37). At time t/7,, w 4.3, we find (in units of the laminar flame time) the 
following: i = 1.2 for Le = 0.8, and the flame surface area is quickly growing; i = 0.1 
for Le = 1 .O, and R w 0 for Le = 1.2, and the flame surface area remains approximately 
constant. 
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5. Comparisons of DNS results with flamelet models 
5.1. Models based on algebraic closures 

The flame surface density profiles presented in $4.2.1 can be directly compared to the 
predictions by the Bray-Moss-Libby (BML) model. The BML model is a well- 
documented second-order closure model designed to avoid gradient transport 
assumptions (Bray 1980, 1990; Bray et al. 1989). The model assumes a bimodal shape 
for the probability density function of the progress variable, an assumption that is 
consistent with a flamelet description of the reaction zone and represents the 
intermittent presence of packets of unburnt and fully burnt mixture at any location 
within the turbulent flame brush. 

Various degrees of refinement are possible within the BML framework, in particular 
with respect to the chemical source terms and the flame surface density. Although a 
transport equation for Z could be incorporated easily (Cant et al. 1990), current 
formulations of the model are limited to a simple algebraic closure (Bray et al. 1984, 
1989). The key quantity in this closure is the flamelet crossing frequency, n,, defined 
as the number of crossings of the flame surface, c = cf, per unit distance along a 
contour, (c) = constant; n, is obviously a function of (c). In the present one- 
dimensional problem, the expression for ny in a (y,z)-plane, x = xo, where (c) = 
constant, is 

and, combining (30) and (40), we can write 

where 5, is the mean of a direction cosine defining the flamelet orientation relative to 
the plane, x = x,, (see figure 2): 

Equation (41) is an exact relation and the flame surface density can always be written 
as the flamelet crossing frequency, n,, divided by a flamelet orientation factor, sU. 
Using this decomposition, the closure problem for C requires tractable expressions for 
n, and 8,. In the BML model, 8, is assumed to be a universal constant, so that the 
physical processes that control the flame surface dynamics are represented exclusively 
through the flamelet crossing frequency. The flamelet crossing frequency is obtained by 
a statistical analysis of the transitions between burnt and unburnt states. The BML 
expressions for n ,  and C are 
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FIGURE 16. Vari tions of the flamelet orientation factor. #... across the turbulent flame brush. L , -  - 
0.8. The dashed line is the Bray-Moss-Libby prediction.'r ii.measured in units of the initial turbulent 
eddy turnover time, r,,. 

where g is a constant of order unity, and i, is a length that characterizes the flame 
wrinkling. Finally, i, is assumed to be constant across the turbulent flame brush and 
is specified empirically as follows : 

i, = c, I(s,/u')", (44) 

where C, and n are model constants. 
It is worth emphasizing that in general, as suggested by (30), measuring the flame 

surface density requires knowledge of the three components of V c  at the flame, i.e. 
requires access to three-dimensional spatial information. The first merit of the BML 
formulation for the mean reaction rate is to relate the flame surface density to a 
quantity n,, which, as seen in (40), can be measured in planes. The three-dimensional 
information is conveyed by the flamelet orientation factor, a,, and a, is assumed to be 
a constant. This assumption is of great practical significance since it puts C at the level 
of ny, i.e. at an experimentally accessible level. In experiments, (40) can be evaluated 
via, for example, laser tomography techniques (Driscoll & Gulati, 1988 ; Cheng, 
Shepherd & Talbot 1988; Chew, Bray & Britter 1990). 

The assumption, 8, = constant, is tested in figure 16 where 8,, is plotted across the 
turbulent flame brush, at two different instants, t /To z 2.5 and t /70 x 4.3. As seen in 
figure 16, and irrespective of the value of the Lewis number, the flamelet orientation 
factor computed from the simulations is found to be approximately constant, both in 
space and time, ey x 0.7. This result is in excellent agreement with the BML 
formulation and suggests that a simple expression like (40) can be used instead of the 
exact expression (30) to calculate the flame surface density. Note that the DNS value 
for 3, is slightly higher than the value proposed by Bray (1990), eY = 0.5. 

The result, 5, = constant, however, does not lead to a better model for Z because 
of uncertainties over an appropriate description for the flamelet crossing frequency. A 
comparison of the BML expressions (43) and (44) with the DNS-based Z-profiles is 
presented in figure 8(b). Following Bray (1990), we use for the model constants: n = 
1, C, = 1, g = 1.5, a, = 0.5. Figure 8 (b) shows that the structure of the Z-profile is not 
accurately captured by the BML model. The model predicts a symmetric distribution 
of flame surface density in (c)-space, whereas the simulations generate skewed profiles 
with a maximum close to (c) = 0.7. These DNS results are consistent with previous 
experimental studies by Driscoll & Gulati (1988), Cheng et al. (1988), and Chew et al. 
(1990), where the variations of the flamelet crossing frequency across the flame were 
found to be asymmetric and skewed towards the burnt gas. 
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Furthermore, although the comparison between DNS data and the BML model is 
rendered difficult by the turbulence decay, some qualitative observations can still be 
made about the general accuracy or inaccuracy of the model. For instance, the BML 
predictions always overestimate the flame surface densities across the turbulent flame 
brush, by a factor decreasing from more than 5 to approximately 2 in the course of the 
simulations. Although the exact magnitude of the error might not be meaningful, the 
fact that it is time-dependent underscores the limits of an algebraic closure that 
cannot account for memory effects and is therefore expected to perform poorly in 
transient problems. These observations suggest that a more complete description might 
be required. 

5.2 .  Models based on the turbulent Z-equation 
The flamelet models based on the turbulent Z-equation offer a more complex, but also 
more complete and more promising approach. As discussed in the introduction, 
different formulations of the modelled Z-equation may be found in the literature. We 
choose to consider in this section the coherent flame model (CFM), based on the ideas 
originally proposed by Marble & Broadwell (1977), and later developed by Candel and 
his co-workers (Darabiha et al. 1987; Maistret et al. 1989; Candel et al. 1990). Also, 
for clarity, we limit our discussion to an early version of CFM. More elaborate 
formulations of CFM and comparisons with other flamelet models may be found in 
Duclos et al. (1993). Our objective here is not to provide a final evaluation of these 
models but to demonstrate the usefulness of DNS in performing such an evaluation. 

In CFM, the balance equation for Z is written as 

where D, is a turbulent diffusivity; k, is the turbulent kinetic energy and t, its rate of 
dissipation, both measured in the unburnt gas; C, and C, are model constants of order 
one. Equation (45) is based on the exact evolution equation given in (13). The first term 
on the right-hand side of (45) describes the transport of Z by turbulent fluctuations and 
is obtained using a standard gradient flux approximation. The transport of Z by flame 
propagation is considered negligible compared to the turbulent transport. The second 
term on the right-hand side of (45) describes the effects of flame stretch and has two 
components. The first component is a production term that accounts for straining due 
to the turbulent motions. This term corresponds to (a , ) ,  in (13). The second 
component is a destruction term that accounts for the smoothing of the flame surface 
by flame propagation effects. This term corresponds to 2(wk,) ,  in (13). Note that 
CFM does not explicitly represent the strain rate due to the mean flow field, ( A T ) S .  
Thus, the basic closure assumptions used in CFM may be summarized as follows: 

In (47), the mean strain rate is assumed to scale with the integral timescale of the 
turbulence. This choice is not unique and various estimates of ( a T ) ,  may be found in 
the literature. For instance, a more elaborate model where ( a , ) ,  is made a function 
of u'/sL and l / lF ,  and thereby includes some effects due to the chemistry, was recently 
proposed by Meneveau & Poinsot (1991). The propagation term is more difficult to 
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model. In (48), this term is modelled as a destruction term, an idea that is shared by 
all current formulations of the C-equation (Darabiha et al. 1987; Pope & Cheng 1988; 
Maistret et al. 1989; Candel et al. 1990; Cant et al. 1990). 

The validity of any of these closure assumptions may be examined using the DNS 
database. We are particularly interested in the propagation term since, unlike turbulent 
diffusion and hydrodynamic straining which occur in other problems, this term 
describes physical processes that are unique features of premixed flames. Also, 
information on the combination of propagation and curvature is scarce and the exact 
significance of this combination is not well understood. In fact, the modelling of the 
propagation term in (48) is based as much on mathematical convenience as it is on 
physical insight. It appears as the most questionable closure assumption used in 
current formulations of the Z-equation. 

Figure 15(a) presents a comparison between the spatial variations of flame stretch 
as obtained from the simulations and the predictions by CFM based on (47) and (48). 
The comparison is performed at t / T 0  x 4.3, for Le = 0.8. We use for the model 
constants C, = C, = 1. Some aspects of this comparison are very encouraging. To its 
credit, the model is able to reproduce qualitatively the spatial structure of the balance 
between production and dissipation of Z, going from production at the front of the 
turbulent flame to dissipation at the back. Several problems remain however. 

One basic problem is that the propagation term in (48) is described as being always 
negative. This simplified description is certainly not valid, as shown in figure 14 where 
2( wk,), is seen to change sign within the turbulent flame brush. It is also inconsistent 
with the underlying physics. Indeed, while negative values of the propagation speed, w, 
are possible in highly stretched flames, they remain rather unlikely and the sign of wk, 
is primarily determined by the sign of the flame curvature, k,. Since most flamelets at 
the leading edge of the turbulent flame are positively curved, the propagation term, 
2(wk,),,  is positive in that region and contributes to flame surface production. In the 
simulations, this contribution is always significant and cannot be neglected, particularly 
for the Le = 0.3 and 0.8 unstable flames. In (48), failing to account for this dual nature 
of the propagation term, destruction at the back of the flame and production at the 
front, is likely to result in a model that is too dissipative. 

Furthermore, it is found that the C/( YR) dependence of the destruction term in (48) 
leads to numerical difficulties on the burnt side of the flame, where both C and ( YR) 
approach zero. In the simulations, ( Y,) goes to zero faster than C as ( c )  + 1, and the 
ratio Z / ( Y , )  is not well-behaved. As a result, CFM strongly overestimates the 
dissipation of flame surface area, locally near (c) = 1, as well as globally when 
quantities are space-averaged. For instance, at time t /70 x 4.3, CFM predicts a 
negative total flame stretch, i = - 1.5, in disagreement with the positive values 
reported in $4.2.2. In plain words, CFM predicts flame contraction when flame growth 
is observed. 

It also appears that the modelling in (48) is incomplete. One remarkable result from 
the simulations is the large effect of the Lewis number on the overall production of 
flame surface area. This result is consistent with a growing body of evidence that shows 
persistence of thermo-diffusive effects in turbulent flames, even at high Reynolds 
numbers (Abdel-Gayed et al. 1984; Wu et al. 1990; see also Kuznetsov & Sabel’nikov 
1990, chap. 6). CFM, however, as seen in (45), does not depend on the flame physical 
properties and therefore cannot account for changes in the Lewis number. The absence 
of thermo-diffusive effects in CFM, like in all flamelet models, is an open problem that 
remains to be addressed. We believe that the present analysis sets the basis for future 
studies of these effects, and others, and demonstrates the potential of DNS methods 
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that can be used to estimate the constituent parts of turbulent combustion models and 
thereby evaluate directly their underlying assumptions. 

6. Conclusions 
Direct simulations of premixed flames in isotropic turbulent flow are used in this 

paper to examine the flamelet description of the mean reaction rate with emphasis on 
the flame surface wrinkling. In the flamelet theory, the wrinkling is described by the 
flame surface density, C. The mean reaction rate is given by the product of the flame 
surface density, C, and the flamelet speed, (Sc)s. 

The relationship between flame surface densities and mean reaction rates is studied 
for different Lewis numbers, Le = 0.3, 0.8, 1.0 and 1.2. The Lewis number is used as 
a control parameter to modify the strength and nature of the flame-flow coupling. For 
flames with Lewis numbers close to unity, 0.8 < Le < 1.2, the departures of the 
flamelet speed from the one-dimensional laminar consumption rate average out; to 
first order the flame surface density is the single key quantity that determines the mean 
reaction rate. In contrast, for Le = 0.3, the effect of the turbulence on the flame surface 
area is coupled with a significant increase in the mean flame intensity, and both the 
flame surface density and the flamelet speed need to be modelled to determine the mean 
reaction rate. 

For Le = 1.0 or 1.2, the combustion process is stable and the flame wrinkling is 
primarily controlled by the turbulent motions, but for lower Lewis numbers the 
combustion becomes highly unstable and the flame surface keeps increasing in time. 
The growth is nearly linear for Le = 0.8, and exponential for Le = 0.3. 

A detailed analysis of the rate of change of flame surface densities is performed, 
based on the exact Z-equation, in which basic physical mechanisms like transport by 
the turbulent flow field, transport by flame propagation, production or destruction by 
flame stretch, are described explicitly. A new DNS-based methodology is developed to 
estimate the different terms appearing in the C-equation. Using this methodology, the 
flame surface density and the flame stretch are resolved spatially across the turbulent 
flame brush. In the simulations, the two components of stretch, hydrodynamic strain 
rate and flame propagation effects, have the same order of magnitude. On the unburnt 
side of the reaction zone, these two components are both positive and the net effect 
corresponds to production of flame surface area. On the other hand, on the burnt side, 
the two components have opposite signs, and the overall balance is negative and 
corresponds to flame surface dissipation. Thus, contrary to the intuitive idea that flame 
propagation effects merely counteract the wrinkling due to the turbulence, the role of 
flame propagation is not constant across the reaction zone and switches from flame 
surface production at the front to flame surface dissipation at the back. 

Additional results show that while a transition in the turbulent flame structure, as 
characterized by the flamelet speed, (Sc)s, occurs at Le = 1, a similar transition for 
the mean propagation speed, (w) , ,  does not occur until the Lewis number is decreased 
to a lower critical value, Le, < 1. The present results show that 0.3 < Le, < 0.8, so 
that, in the Le = 0.8 case, the flame response is found to be paradoxical: the leading 
edge of the turbulent flame burns faster but propagates more slowly than the rear edge 
of the flame, which bums more slowly but propagates faster into the reactants. While 
Le, is known to depend on the flame properties, like for instance the amount of heat 
release, one remaining question is whether Le, is a function of the turbulence itself. 

Direct comparisons with flamelet models are also performed. The empirical 
assumption in the Bray-Moss-Libby model that the flame surface density is 
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proportional to the flamelet crossing frequency is found to be valid. This result is the 
current basis for experimental measurements of flame surface densities. Unfortunately, 
large discrepancies are obtained when comparing the numerical results with the 
Bray-Moss-Libby description of the flamelet crossing frequency. This description does 
not account explicitly for the competing effects of hydrodynamic straining and flame 
propagation, which directly control the changes in flame surface area, and is therefore 
not well-suited to address problems where the balance between these effects is changing 
rapidly. 

In comparison, the coherent flame model of Marble & Broadwell is based on the Z- 
equation and incorporates explicitly the important physical mechanisms that determine 
the rate of change of flame surface area. Closure is thereby achieved at a more 
fundamental level. The spatial variations in the balance between production and 
destruction of flame surface area are correctly described by the model. However, the 
modelling of the combined effects of flame curvature and flame propagation needs 
further improvement. Also, the model, like most current flamelet models, is unable to 
reproduce thermo-diffusive effects which are found to be very important in the present 
simulations. 
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